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Abstract—In this work we describe a knowledge based system
employed for the dynamic, goal-directed and creative generation
of novel knowledge in cognitive agents. This system exploits a
recently introduced extension of a Description Logic of typ-
icality (TCL) able to combine prototypical (i.e. commonsense)
descriptions of concepts. In particular: given a goal expressed
as a set of properties, in case an intelligent agent cannot find
a concept in its knowledge base able to fulfill these properties,
our system exploits the Description Logic TCL in order to find at
least two concepts whose creative combination allows to satisfy
the goal. The knowledge base of the agent is then extended via
a mechanism of commonsense concept combination where the
resulting combined concept represents the solution for the initial
goal. The proposed approach has been tested in the task of object
composition and compared with the responses provided by the
OROC system.

I. INTRODUCTION

Goal-directed problem solving is a crucial everyday activity
for both natural and artificial systems. A straightforward as-
sumption in goal-directed systems is that, in the cases where a
given goal cannot be reached, a replanning strategy is required
in order to change the original goal and/or reconfigure the set
of actions originally selected to perform that goal [Aha, 2018].
Usually such goal reconfiguration is based on the availability
of novel, additional, knowledge that can be then used to
select novel sub-goals or novel operations to carry on. In
this paper, we consider those situations where the solution
to a given problem cannot come with the classical means
usually adopted for obtaining new knowledge (and leading to
a goal-redefinition). In particular, we consider scenarios where
the availability of novel knowledge cannot be obtained in an
extrinsic way (e.g. via communication with another agent or,
via a novel learning process or by an external injection of novel
knowledge in the declarative memory of an artificial system).
On the other hand, in such scenarios, the key to the problem
solution lies in an intrinsic agent capability of automatically
generating novel knowledge by recombining, in a dynamic and
innovative way, the possessed knowledge in order to look with
new eyes to the problem in hand and solve it.

In this paper we present a framework for the dynamic and
automatic generation of novel knowledge obtained through
a process of commonsense reasoning based on typicality-
based concept combination. We exploit a recently introduced

extension of a Description Logic of typicality able to combine
prototypical descriptions of concepts in order to generate
new prototypical concepts. Intuitively, in the context of our
application of this logic, given a goal expressed as a set of
properties, if the knowledge base does not contain a concept
able to fulfill all these properties, then our system looks for at
least two concepts to recombine in order to extend the original
knowledge base and satisfy the goal.

The rest of the paper is organized as follows. In section
II we describe the rationale of our proposal. In section III
we describe the system adopting the proposed logic, whose
efficacy is tested in section IV in the task of object composi-
tion. Finally, in section V we survey related approaches and
conclude with a discussion on future works.

II. COMMONSENSE CONCEPT INVENTION VIA DYNAMIC
KNOWLEDGE COMBINATION

The capability of inventing novel concepts by combining
the typical knowledge of pre-existing ones is an important
generative phenomenon highlighting some crucial aspects of
the knowledge processing capabilities in human cognition.
Such ability, in fact, concerns high-level capacities associated
to creative thinking and problem solving. Still, it repre-
sents an open challenge in the field of artificial intelligence
[Boden, 1998]. Dealing with this problem requires, from an
AI and cognitive modelling perspective, the harmonization
of two conflicting requirements that are hardly accommo-
dated in symbolic systems [Frixione and Lieto, 2011]): the
need of a syntactic and semantic compositionality (typical
of logical systems) and that one concerning the exhibition
of typicality effects. According to a well-known argument
[Osherson and Smith, 1981], in fact, prototypes (i.e. common-
sense conceptual representations based on typical properties)
are not compositional. The classical characterization of such
argument is the following one: consider a concept like pet fish;
it results from the composition of the concept pet and of the
concept fish. However, the prototype of pet fish cannot result
from the composition of the prototypes of a pet and a fish: e.g.
a typical pet is furry and warm, a typical fish is grayish, but a
typical pet fish is neither furry and warm nor grayish (typically,
it is red). In this work we exploit a framework able to account
for this type of human-like concept combination and propose



to use it as a novel mechanism able to expand the spectrum
of subgoaling procedures in cognitive artificial systems. In
particular, we adopt a nonmonotonic extension of Description
Logics (from now on DL) 1 able to reason on typicality and
called TCL (typicality-based compositional logic) introduced in
[Lieto and Pozzato, 2019b], [Lieto and Pozzato, 2018].

This logic combines three main ingredients. The first one
relies on the DL of typicality ALC + TR introduced in
[Giordano et al., 2015], which allows to describe the protoype
of a concept. In this logic, “typical” properties can be directly
specified by means of a “typicality” operator T enriching
the underlying DL, and a TBox can contain inclusions of
the form T(C) v D to represent that “typical Cs are
also Ds”. As a difference with standard DLs, in the logic
ALC + TR one can consistently express exceptions and
reason about defeasible inheritance as well. For instance,
a knowledge base can consistently express that “normally,
athletes are fit”, whereas “sumo wrestlers usually are not
fit” by T(Athlete) v Fit and T(SumoWrestler) v ¬Fit ,
given that SumoWreslter v Athlete . The semantics of the
T operator is characterized by the properties of rational
logic [Lehmann and Magidor, 1992], recognized as the core
properties of nonmonotonic reasoning. ALC + TR is char-
acterized by a minimal model semantics corresponding to an
extension to DLs of a notion of rational closure as defined
in [Lehmann and Magidor, 1992] for propositional logic: the
idea is to adopt a preference relation among ALC + TR

models, where intuitively a model is preferred to another one
if it contains less exceptional elements, as well as a notion
of minimal entailment restricted to models that are minimal
with respect to such preference relation. As a consequence, T
inherits well-established properties like specificity and irrele-
vance: in the example, the logic ALC+TR allows us to infer
T(AthleteuBald) v Fit (being bald is irrelevant with respect
to being fit) and, if one knows that Hiroyuki is a typical sumo
wrestler, to infer that he is not fit, giving preference to the
most specific information.

As a second ingredient, we consider a distributed semantics
similar to the one of probabilistic DLs known as DISPONTE
[Riguzzi et al., 2015], allowing to label inclusions T(C) v D
with a real number between 0.5 and 1, representing its degree
of belief/probability, assuming that each axiom is independent
from each others. Degrees of belief in typicality inclusions
allow to define a probability distribution over scenarios:
roughly speaking, a scenario is obtained by choosing, for each
typicality inclusion, whether it is considered as true or false
In a slight extension of the above example, we could have
the need of representing that both the typicality inclusions
about athletes and sumo wrestlers have a degree of belief of
80%, whereas we also believe that athletes are usually young
with a higher degree of 95%, with the following KB: (1)

1Description Logics are a class of decidable fragments of first order
logics that are at the base of Ontology Web Language (OWL) used for the
realization of computational ontologies. Nowadays DLs are the most important
and widespread symbolic knowledge-representation systems. We remind to
[Baader et al., 2003] for a complete introduction.

SumoWrestler v Athlete; (2) 0.8 :: T(Athlete) v Fit ; (3)
0.8 :: T(SumoWrestler) v ¬Fit ; (4) 0.95 :: T(Athlete) v
YoungPerson . We consider eight different scenarios, repre-
senting all possible combinations of typicality inclusion: as an
example, {((2), 1), ((3), 0), ((4), 1)} represents the scenario
in which (2) and (4) hold, whereas (3) does not. We equip
each scenario with a probability depending on those of the
involved inclusions: the scenario of the example, has proba-
bility 0.8×0.95 (since 2 and 4 are involved) ×(1−0.8) (since
3 is not involved) = 0.152 = 15.2%. Such probabilities are
then taken into account in order to choose the most adequate
scenario describing the prototype of the combined concept.

As a third element of the proposed formalization we employ
a method inspired by cognitive semantics [Hampton, 1987] for
the identification of a dominance effect between the concepts
to be combined: for every combination, we distinguish a
HEAD, representing the stronger element of the combination,
and a MODIFIER. The basic idea is: given a KB and two
concepts CH (HEAD) and CM (MODIFIER) occurring in
it, we consider only some scenarios in order to define a
revised knowledge base, enriched by typical properties of the
combined concept C v CH u CM .
Given a KB K = 〈R, T ,A〉 and given two concepts CH and
CM occurring in K, the logic TCL allows defining a prototype
of the compound concept C as the combination of the HEAD
CH and the MODIFIER CM , where the typical properties
of the form T(C) v D (or, equivalently, T(CH u CM ) v
D) to ascribe to the concept C are obtained by considering
blocks of scenarios with the same probability, in decreasing
order starting from the highest one. We first discard all the
inconsistent scenarios, then:

• we discard those scenarios considered as trivial, con-
sistently inheriting all the properties from the HEAD
from the starting concepts to be combined. This choice
is motivated by the challenges provided by task of
commonsense conceptual combination itself: in order to
generate plausible and creative compounds it is necessary
to maintain a level of surprise in the combination. Thus
both scenarios inheriting all the properties of the two
concepts and all the properties of the HEAD are discarded
since prevent this surprise;

• among the remaining ones, we discard those inheriting
properties from the MODIFIER in conflict with properties
that could be consistently inherited from the HEAD;

• if the set of scenarios of the current block is empty, i.e. all
the scenarios have been discarded either because trivial
or because preferring the MODIFIER, we repeat the
procedure by considering the block of scenarios, having
the immediately lower probability.

Remaining scenarios are those selected by the logic TCL. The
ultimate output of our mechanism is a knowledge base in
the logic TCL whose set of typicality properties is enriched
by those of the compound concept C. Given a scenario w
satisfying the above properties, we define the properties of C
as the set of inclusions p :: T(C) v D, for all T(C) v D



that are entailed from w in the logic TCL. The probability p is
such that:
• if T(CH) v D is entailed from w, that is to say D is a

property inherited either from the HEAD (or from both
the HEAD and the MODIFIER), then p corresponds to
the degree of belief of such inclusion of the HEAD in
the initial knowledge base, i.e. p : T(CH) v D ∈ T ;

• otherwise, i.e. T(CM ) v D is entailed from w, then
p corresponds to the degree of belief of such inclusion
of a MODIFIER in the initial knowledge base, i.e. p :
T(CM ) v D ∈ T .

The knowledge base obtained as the result of combining
concepts CH and CM into the compound concept C is called
C-revised knowledge base, and it is defined as follows:

KC = 〈R, T ∪ {p : T(C) v D},A〉,

for all D such that either T(CH) v D is entailed in w or
T(CM ) v D is entailed in w, and p is defined as above.

In [Lieto and Pozzato, 2019b] we have shown that reason-
ing in TCL remains in the same complexity class of standard
ALC Description Logics.

Theorem 2.1: Reasoning in TCL is EXPTIME-complete.

III. A GOAL-DIRECTED SYSTEM FOR DYNAMIC
KNOWLEDGE GENERATION AND INVENTION

In this section we describe a goal-directed system rely-
ing on the above illustrated TCL logic 2. In particular, the
system (available at http://di.unito.it/GOCCIOLA) is able to
dynamically generate novel knowledge in the cases in which
the original goal cannot be directly solved by a given agent
only by resorting to its available knowledge. The process of
automatic knowledge generation, as mentioned, is obtained by
adopting the process of commonsense concept combination of
TCL, namely: by combining concepts in the knowledge base
which are relevant for the task to solve.

The overall pipeline of the system can be described as
follows: the system receives in input a certain goal to achieve.
The goal is expressed in terms of tuples representing the
desired final state. For example: a goal can be expressed as
{Object ,Cutting ,Graspable} to identify the scope of retriev-
ing, from the inventory of the available knowledge in the agent
declarative memory, an element that is a graspable object able
to cut some surfaces. Once processed the input, the system
verifies, via a searching process in the hybrid, probabilistic,
knowledge base assumed in TCL, whether there is some
element that can directly satisfy the desired conditions. If so,
the element(s) (if any) satisfying the request are returned and
ranked in descending order of probability. If not, the system
tries to perform a task of semantic-driven goal-reformulation
by looking for WordNet synonyms and hyperonyms3 of the
terms specified in input (in order to find at least a minimal

2In other works we have already shown how such logic can be used to
model complex cognitive phenomena [Lieto and Pozzato, 2019b] (including
methaphors generation) and to build intelligent applications in the field of
computational creativity [Lieto and Pozzato, 2019a].

3WordNet is a widely known lexical database [Miller, 1995].

set of candidate concepts sharing, if considered jointly, all the
required goal desiderata). Once this process is also executed,
and the minimal set of candidate concepts that (jointly) can be
combined to satisfy the goal is reached, the system adopt the
typicality-based reasoning procedure of concept combination
developed in TCL.

More formally:

Definition 3.1: Given a knowledge base K in the logic TCL,
let G be a set of concepts {D1, D2, . . . , Dn} called goal. We
say that a concept C is a solution to the goal G if either:
• for all Di ∈ G, either K |= C v Di or K′ |= T(C) v Di

in the logic TCL

or
• C corresponds to the combination of, at least, two con-

cepts C1 and C2 occurring in K, i.e. C ≡ C1 u C2, and
the C-revised knowledge base KC provided by the logic
TCL is such that, for all Di ∈ G, either KC |= C v Di

or KC |= T(C) v Di.

In case the goal cannot be achieved in a direct way (i.e.
there is no element in the KB satysfying the goal desiderata)
the system computes a list of concepts of the initial knowledge
base satisfying at least a property of the goal (using Wordnet
if the initial goal formulation does not satisfy such condition).
As an example, suppose to have:

G = {Object ,Graspable,Cutting},

and suppose that the following inclusions belong to the
knowledge base:

Spoon v Graspable
0.85 :: T(Spoon) v ¬Cutting
0.9 :: T(Vase) v Graspable
Vase v Object

Both Vase and Spoon are included in the list of can-
didate concepts to be combined (along with other concepts
satysfying, for example other properties of the goal such as,
for example, being able to cut some surface). As a second
step, for each item in the list of candidate concepts to be
combined, the system computes a rank of the concept as the
sum of the probabilities of the properties also belonging to
the goal, assuming a score of 1 in case of a rigid property.
In the example, Vase is ranked as 0.9 + 1 = 1.9, since both
Graspable and Object are properties belonging to the goal:
for the former we take the probability 0.9 of the typicality
inclusion T(Vase) v Graspable, for the latter we provide
a score of 1 since the property Vase v Object is rigid.
Concerning the concept Spoon , the system computes a rank of
1: indeed, the only inclusion matching the goal is the rigid one
Spoon v Graspable. Finally, the system checks whether the
concept obtained by combining the candidate concepts with
the highest ranks, (e.g. C1 and C2 in case of only 2 concepts),
is able to satisfy the initial goal. The system computes a double
attempt, by considering first C1 as the HEAD and C2 as the
MODIFIER and, in case of failure, C2 as the HEAD and C1

as the MODIFIER.

http://di.unito.it/GOCCIOLA


In order to combine the two candidate concepts C1 and C2,
our system exploits COCOS [Lieto et al., 2018b], a tool gen-
erating scenarios and choosing the selected one(s) according to
the logic TCL. COCOS makes use of the library owlready2
4 that allows one to rely on the services of efficient DL
reasoners, e.g. the HermiT reasoner.

IV. EXPERIMENTATION

In this section, we describe the experimental setup and
the obtained results of our system in task of object com-
position of compound tools. Such ability represents a very
important creative capability found only in primates (specif-
ically, humans and great apes) and, more recently, in ravens
[von Bayern et al., 2018]. It still represents an open challenge
in the field of AI and cognitive modelling. As we will see
later in detail, in fact, a major problem consists in the lack
of realistic benchmarks for evaluating the performance on this
task for both humans and artificial systems (this problem is
also explicitly reported in [Olteţeanu and Falomir, 2016] that
represent, to the best of our knowledge, the first attempt of
modelling such faculty in an artificial system). Despite the
lack of such a benchmark, for our purposes we decided to test
our system on the proof-of-concept evaluation presented in
[Olteţeanu and Falomir, 2016]. In addition, we also provided
a comparison with responses provided by human judges for
the concept composition task.

A. Setup

Knowledge about goals, objects and entities can be rep-
resented in our system in symbolic terms. As an example,
let us consider the above mentioned goal: object, cutting,
graspable. The initial knowledge base is formalized in the
language of the logic TCL and it is stored in a suitable file.
Rigid properties, holding for all individuals of a given class,
are stored as pairs object-property, whereas typical properties
are formalized as triples object-property-probability. We have
considered an extension with probabilities of a portion of
the ontology Open Cyc [Lenat, 1995] 5 referring to physical
objects and tools of ordinary use in a domestic environment
(e.g. a glass, a vase etc.). The considered branch of the Cyc
ontology (formalized in standard Description Logic and, as a
consequence, not able to represent and reason on typicality-
based information) has been manually extended in the lan-
guage of the logic TCL. Therefore the symbolic representation
of the ontological objects additionally includes the following
typical and functional characteristics: color, size, function,
physical affordance, shape, material. Please note that it was
not mandatory to fill every property of the schema for the
description of objects.

As an example, the concept Vase is represented as follows:
vase, object
vase, high convexity
vase, ceramic, 0.8

4https://pythonhosted.org/Owlready2/
5https://github.com/asanchez75/opencyc/blob/master/opencyc-latest.owl.gz.

vase, to put plants, 0.9
vase, to contain objects, 0.9
vase, graspable, 0.9

corresponding to the following knowledge base in TCL:
Vase v Object
Vase v HighConvexity
0.8 :: T(Vase) v Ceramic
0.9 :: T(Vase) v ToPutPlants
0.9 :: T(Vase) v ToContainObjects
0.9 :: T(Vase) v Graspable

B. Results of Knowledge Generation via Concept Composition

We tested the proposed framework in the task of object
composition. In particular, for this task we used the same setup
adopted in [Olteţeanu and Falomir, 2016] by using a limited
sample of the Cyc ontology about domestic objects.

As mentioned in [Olteţeanu and Falomir, 2016], there is no
benchmark test available for this kind of task on both human
participants and artificial systems. Therefore, we tested our
system by comparing our results with the ones described by
[Olteţeanu and Falomir, 2016] (table 5, p.23) for the OROC
system (to the best of our knowledge, the only available in
the literature) by considering the 5 goals they used as testbed.
In particular, we asked our system to combine objects in order
to obtain the following goals:

G1 = {Object ,Cutting ,Graspable},

G2 = {Object ,Graspable,LaunchingObjectsAtDistance},

G3 = {Object ,Support ,LiftingFromTheGround},

G4 = {CandlewithSupport},

G5 = {Noteebook}

In particular, we discarded the goals 4 and 5 since they are
intended as a composition based on a simple meronimy. Goal
4, in fact, is achievable by just composing the two objects
Candle and Candle Support available in the knowledge base.
Also the goal of realizing a Notebook was achievable by com-
posing two constituents part of the object available in the KB:
Blank pages and Cover. Such goals can be easily reached by
using a standard Description Logic reasoner, without resorting
to the sophistication of TCL for the commonsense conceptual
composition. For the goals 1, 2 and 3, on the contrary we
adopted the framework proposed in this paper.

As mentioned, we have considered an extension of the
knowledge base Open Cyc where we manually introduced,
in the language of TCL, typicality-based properties/inclusions
that were not originally available in the ontology due to
the fact that standard ontological semantics does not sup-
port representing and reasoning on typicality and exceptions
[Giordano et al., 2013]. An example of the introduced in-
clusions/properties (for the concepts Shelf, Stone, Stump,
RubberBand) is reported below:

Shelf v Object
0.8 :: T(Shelf ) vWood

https://github.com/asanchez75/opencyc/blob/master/opencyc-latest.owl.gz


0.9 :: T(Shelf ) v Rectangular
0.8 :: T(Shelf ) v Containment
0.8 :: T(Shelf ) v Support

0.8 :: T(Stump) vWood
0.7 :: T(Stump) v Medium
0.8 :: T(Stump) v Linear
0.7 :: T(Stump) v LiftingFromGround
0.7 :: T(Stump) v Support

Stone v MineralAggregate
0.7 :: T(Stone) v Roundish
0.7 :: T(Stone) v Greyish
0.7 :: T(Stone) v BuildingArrowHeads
0.8 :: T(Stone) v ShapingObjects
0.7 :: T(Stone) v Cutting
0.6 :: T(Stone) v Support
0.8 :: T(Stone) v StrikeAtDistance
0.9 :: T(Stone) v Graspable
0.7 :: T(Stone) v Narrow

RubberBand v Object
RubberBand v Plastic
0.9 :: T(RubberBand) v Propeller
0.9 :: T(RubberBand) v
LaunchingObjectsAtDistance
0.7 :: T(RubberBand) v Small

Given a KB extended in TCL as reported above, we employed
our system for solving the first 3 goals. For what concerns
the first goal, i.e. where the purpose of our intelligent sys-
tem consisted is looking for a graspable object able to cut,
the system was not able to find a unique object satisfying
all the properties and, therefore, proposed the combination
Stone u Branch as a solution, thus suggesting a combined
concept having the characteristics resembling a rudimentary
KnifeWithAWoodHandle

For what concerns the second goal, where the system was
asked to look for a graspable object able to launch objects
at distance, the systems asked COCOS to combine the con-
cepts Branch and RubberBand , being those with the highest
rank with respect to G2. The (Stone u RubberBand)-revised
knowledge base, suggested by adopting Stone as the HEAD,
is such that all the properties of both concepts are considered,
with the exception of Support . Therefore the knowledge base
of the agent is extended (among the others) by the following
inclusions:

0.9 :: T(Branch u RubberBand) v Graspable
0.9 :: T(Branch u RubberBand) v
LaunchingObjectsAtDistance

and the combination Branch u RubberBand is a solution
for the goal G2. The intentional description of the combined
concept for G2 corresponds to the concept Slingshot .

For what concerns the third goal, the system provides a
solution by combining Shelf and Stump. Notice that also

Stump u RubberBand would be a solution: however, our
system gives preference to the concept Shelf because it has a
higher rank with respect to the goal, being also, normally, a
member of the concept Support . The intentional description
of the combined concept for G3 corresponds to the concept
Table .

Therefore our system provided the same results provided in
the OROC system [Olteţeanu and Falomir, 2016].

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a system aimed at specifi-
cally addressing this problem by proposing an extension of
classical subgoaling procedures through a dynamical, goal-
driven, enrichment of an agent knowledge base obtained via
a procedure exploiting a process of commonsense conceptual
combination based on the logic TCL.

The proposed approach has been tested in the task of
object composition and compared with the available results
of the system OROC [Olteţeanu and Falomir, 2016] that is,
to the best of our knowledge, the first system proposing a
proof-of-concept procedure for the evaluation of such tasks.
In particular, we have shown how our framework is able
to generate the same results provide by the OROC system
by adopting different representational and reasoning assump-
tions. As a further element, it is also important to point
put that the overall approach can be used to extend the
knowledge processing capabilities (see [Lieto et al., 2018a] of
cognitive architectures like SOAR (see [Lieto et al., 2019] on
this aspect). Our proposal, in fact, is compliant with the idea
of a having goal-directed contextual activation of concepts
[Lieto, 2014] going from the long-term memory to the short
term memory of a cognitive agent. Such extension has been
already employed in knowledge-based systems like DUAL-
PECCS [Lieto et al., 2017] integrated with different cognitive
architectures.

A. Related Works

Other attempts similar to the one proposed here concern
the modelling of the conceptual blending phenomenon: a task
where the obtained concept is entirely novel and has no strong
association with the two base concepts (for details about the
differences between conceptual combination and conceptual
blending see [Nagai and Taura, 2006]). It is worth noticing
that both these approaches deal with the problem of conceptual
blending, while our logic provides a nonmonotonic DL for
dealing with conceptual combination. The difference between
these two concept synthesis tasks can be roughly explained
as follows (for details see [Nagai and Taura, 2006]): while
in concept combination the compound concept is a subset of
the composing concepts, in conceptual blending the obtained
concept is entirely novel, it has no strong association with the
two base concepts. In this setting, [Confalonieri et al., 2016]
proposed a mechanism for conceptual blending based on the
DL EL++. They construct the generic space of two concepts
by introducing an upward refinement operator that is used for
finding common generalizations of EL++ concepts. However,



differently from us, what they call prototypes are expressed
in the standard monotonic formalism, which does not allow
to reason about typicality and defeasible inheritance. More re-
cently, a different approach is proposed in [Eppe et al., 2018],
where the authors see the problem of concept blending as a
nonmonotonic search problem and proposed to use Answer
Set Programming (ASP) to deal with this search problem. As
we have shown in [Lieto and Pozzato, 2019b], the approach
adopted in our system is flexible enough to be applied also to
the case of conceptual blending. There is no evidence, how-
ever, that both the frameworks of [Confalonieri et al., 2016]
and [Eppe et al., 2018] would be able to model (in toto or in
part) conceptual combination problems like the object com-
position task. As such, TCL seems to provide a more general
mechanism for modelling the combinatorial phenomenon of
concept invention (that can be obtained both with combination
and blending).

B. Future Works

In future research we aim at extending our approach to more
expressive symbolic formalisms and Description Logics such
as, for example, those underlying the standard OWL language
(i.e. the standard for ontological knowledge bases). Moreover,
in future works, we plan to consider cases in which the system
is able to provide a partial solution, satisfying a proper subset
of the initial goals. The system described in section III relies
on COCOS, a tool for combining concepts in the logic TCL.
In future research, we aim at studying the application of
optimization techniques in [Alberti et al., 2017] in order to
improve the efficiency of COCOS and, a consequence, of the
proposed goal-driven knowledge generation system. Finally,
we aim at extending the evaluation provided in this paper in
two directions: the first one concerns the release of a richer
dataset to use for the task of task of Object Composition
for testing both human and artificial creativity (and this will
require a truly interdisciplinary effort). The second one goes
in the direction of testing our dynamic knowledge generation
system on larger knowledge bases. This aspect would require
to analyze in more detail heuristic aspects concerning the
efficiency about the concept selection and combination.
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